HydroForecast
HydroForecastHydroForecast
HydroForecast
HydroForecast
/
Product
ProductProductProductProductProductProductProduct
Product
Product
/
Insight

Preprint: How we are advancing uncertainty estimation with deep learning

Our Technical Director, Alden Keefe Sampson is a co-author in the academic preprint, Uncertainty Estimation with Deep Learning for Rainfall–Runoff Modelling.

Laura Read
Jan 20, 2021
Table of contents


Illustration from the preprint illustrating a Mixture Density Network

Our Technical Director, Alden Keefe Sampson is a co-author in the academic preprint, Uncertainty Estimation with Deep Learning for Rainfall–Runoff Modelling. The full author list is: Daniel Klotz, Frederik Kratzert, Martin Gauch, Alden Keefe Sampson, Günter Klambauer, Sepp Hochreiter, and Grey Nearing.

Abstract. Deep Learning is becoming an increasingly important way to produce accurate hydrological predictions across a wide range of spatial and temporal scales. Uncertainty estimations are critical for actionable hydrological forecasting, and while standardized community benchmarks are becoming an increasingly important part of hydrological model development and research, similar tools for benchmarking uncertainty estimation are lacking. We establish an uncertainty estimation bench-5marking procedure and present four Deep Learning baselines, out of which three are based on Mixture Density Networks and one is based on Monte Carlo dropout. Additionally, we provide a post-hoc model analysis to put forward some qualitative understanding of the resulting models. Most importantly however, we show that accurate, precise, and reliable uncertainty estimation can be achieved with Deep Learning.

Read more

No items found.