Our objectives for forecasting water quality are the same for our forecasts of water quantity: to provide the decision-support tools necessary to proactively manage watersheds. Through this research, we have identified compelling capabilities of HydroForecast to be extended into a water quality forecast service.
Our objectives for forecasting water quality are the same for our forecasts of water quantity: to provide the decision-support tools necessary to proactively manage watersheds. Through this research, we have identified compelling capabilities of HydroForecast to be extended into a water quality forecast service.
In a feasibility study conducted in 2019, we sought to:
This study, conducted in the western basin of Lake Erie and the Sacramento River, confirmed that it is feasible to forecast water quality metrics using satellite data and machine learning.
High predictive accuracy was achieved for water temperature and dissolved oxygen. The average R² across all tested sites is 0.96 for water temperature and 0.90 for dissolved oxygen. Other metrics, such as blue green algae presence, pH, conductivity, turbidity, and nitrogen showed promising results and potential for operational usage with further research and development.
The power behind HydroForecast's architecture is its ability to flexibly support multiple outputs, variable horizons, and new inputs with ease. All of our water quality investigations leverage the existing breakthroughs achieved by HydroForecast.